PROGRAMMING
LANGUAGES
AND CODING

All the software engineering steps that have been presented to this point
are directed toward a final objective: to translate representations of
softwafe into a form that can be “understood” by the computer. We have (fi-
nally) reached the coding step—a process that transforms design into a pro-
gramming language. Gerald Weinberg [WEI71] expressed the true meaning
of coding when he wrote: “...when we talk to our computers, unhappily, we
are usually speaking in different tongues....”

Most readers of this book may live to see the day when the above quota-
tion is proved incorrect. Requests for computer processing services may be
coded (or spoken) in a natural language, such as English. Already, a set of
so-called fourth-generation techniques is changing our understanding of the
term “programming language.” Rather than coding, developers of some
classes of management information systems (and limited areas of engineer-
ing and scientific applications) can now describe desired results, rather
than desired procedure, in a nonprocedural language. Conventional pro-
gramming language source code is then automatically generated.

However, the vast majority of software applications still reside beyond
the reach of fourth-generation approaches. For the time being, we code
using artificial languages such as Ada, FORTRAN, PASCAL, C, COBOL, or
assembler language.

When considered as a step in the software engineering process, coding is
viewed as a natural consequence of design. However, programming language
characteristics and coding style can profoundly affect software quality and
maintainability. This chapter does not aspire to teach the reader to code.
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Rather, topics associated with programming languages and coding are pre.
sented in the broader context of software engineering.

THE TRANSLATION PROCESS

16.2

The coding step translates a detail design representation of software into a -
programming language realization. The translation process continues when -
a compiler accepts source code as input and produces machine-dependent 0b-
Jject code as output. Compiler output is further translated into machine
code—the actual instructions that drive microcoded logic in the central
processing unit.

The initial translation step—from detail design to programming lan-
guage —is a primary concern in the software engineering context. “Noise”
can enter the translation process in many ways. Improper interpretation of
a detail design specification can lead to erroneous source code [SHES81].
Programming language complexity or restrictions can lead to convoluted
source code that is difficult to test and maintain. More subtly, characteris-
tics of a programming language can influence the way we think, propagat-
ing unnecessarily limited software designs and data structures.

For example, a design directed at a target FORTRAN 77 implementa-
tion would be less likely to select a linked list data structure, because FOR-
TRAN 77 does not directly support such a structure. If the target language
were C or PASCAL (both languages provide direct support for linked lists),
the linked list would be a more feasible alternative.

Language characteristics have an impact on the quality and efficiency
of translation. In the next section, we evaluate language characteristics by
considering two different views of programming languages.

PROGRAMMING LANGUAGE CHARACTERISTICS

Programming languages are vehicles for communication betweent humans
and computers. The coding process —communication via a programming
language —is a human activity. As such, the psychological characteristics of
a language have an important impact on the quality of communication. The
coding process may also be viewed as one step in the software engineering
process. The engineering characteristics of a language have an important
impact on the success of a software development project. Finally, technical
characteristics of a language can influence the quality of design (recall that
practicality often dictates that detail design be directed toward a specific
programming language). Therefore, technical characteristics can affect
both human and software engineering concerns.
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16.2.1 A Psychological View

In his book Software Psychology, Ben Shneiderman [SHN80] observed that
the role of the software psychologist is to “focus on human concerns such as
ease of use, simplicity in learning, improved reliability, reduced error fre-
quency and enhanced user satisfaction, while maintaining an awareness of
machine efficiency, software capacity, and hardware constraints.” Even
though automated tools (CASE) provide substantial assistance, software en-
gineering remains an intensely human activity. We still have much to learn
about the human aspects of computer-based system development.

Another software psychologist, Gerald Weinberg | WEI71], relates a story
that bears repeating (in paraphrased form) when we consider characteristics
of programming languages:

It is impossible to begin a discussion of psychological principles of program-
ming language design without recalling the story of “The Genius Tailor.” It
seems that a man had gone to the tailor to have a suit made cheaply, but when
the suit was finished and he went to try it on, it didn’t fit him at all.

Complaining that the jacket was too big in back, the right arm was too long,
one pant leg was too short and three buttons were missing, the man was justifi-
ably upset.

“No problem,” said the tailor, “just hunch your back, bend your arm, walk
with a limp, and stick your fingers through the button holes and you'll look just
fine!”

# The man contorted his body to fit the suit and feeling duped by the tailor,
he left. He had not walked one block when he was approached by a stranger.

“Who made that suit for you?” asked the stranger. “I'm in the market for a
new suit myself.”

Surprised, but pleased at the compliment, the man pointed out the tailor’s
shop.

“Well, thanks very much,” said the stranger, hurrying off. “I do believe I'll
go to that tailor for my suit. Why, he must be a genius to fit a cripple like you!”

Weinberg suggests that we could extend this parable to a story of the ge-
nius programming language designer. The designers of programming lan-
guages often make us contort our approach to a problem so that the approach
will fit the constraints imposed by a specific programming language. Be-
cause human factors are critically important in programming language
design, the psychological characteristics of a language have a strong bearing
on the success of design to code translation and implementation.

A number of psychological characteristics [WEI71] occur as a result of
programming language design. Although these characteristics are not
measurable in any quantifiable way, we recognize their manifestation in all
programming languages. We discuss each characteristic briefly in the para-
graphs that follow.

.-jEVJ‘Q o8
N




516

PART 3: THE DESIGN AND IMPLEMENTATION OF SOFTWARE

Uniformity indicates the degree to which a language uses consistent nq.
tation, applies seemingly arbitrary restrictions, and supports syntactic or
semantic exceptions to the rule. For example, FORTRAN uses the parenthe.
ses as delimiter for array indices, as a modifier for arithmetic precedence,
and as a delimiter for a subprogram argument list (to name a few!). Thig
multiuse notation has led to more than a few subtle errors.

Ambiguity in a programming language is perceived by the programmer.,

A compiler will always interpret a statement in one way, but the human '«

reader may interpret the statement differently. Here lies psychological am.
biguity. For example, psychological ambiguity arises when arithmetic prece-
dence is not obvious:

X = X1/X2*X3

One reader of the source code might interpret the above as X = (X,/X,)*X,
while another reader might “see” X = X,/(X,*X3). Another potential source
of ambiguity is the nonstandard use of identifiers that have default data
types. For example, in FORTRAN an identifier KDELTA would be assumed
(by default) to have integer characteristics. However, an explicit declara-
tion, REAL KDELTA, could cause confusion due to psychological ambiguity.

A lack of uniformity and the occurrence of psychological ambiguity nor-
mally occur together. If a programming language exhibits the negative as-
pects of these characteristics, source code is less readable and translation
from design is more error-prone.

Compactness of a programming language is an indication of the amount
of code-oriented information that must be recalled from human memory.
Among the language attributes that measure compactness are:

The degree to which a language supports the structured constructs (Chap-
ter 10) and logical “chunking”

The kinds of keywords and abbreviations that may be used
The variety of data types and default characteristics

The number of arithmetic and logical operators

The number of built-in functions.

APL is an exceptionally compact programming language. Its powerful
and concise operators allow relatively little code to accomplish significant
arithmetic and logical procedures. Unfortunately, the compactness of APL
also makes the language difficult to read and understand, and can lead to
poor uniformity (e.g., the use of monadic and dyadic forms for the same op-
erator symbol).

The characteristics of human memory have a strong impact on the way
in which we use language. Human memory and recognition may be divided
into synesthetic and sequential domains [KLAS80]. Synesthetic memory al-
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lows us to remember and recognize things as a whole. For example, we rec-
ognize a human face instantly; we do not consciously evaluate each of its
distinct parts prior to recognition. Sequential memory provides a means for
recalling the next element in a sequence (e.g., the next line in a song, given
the preceding lines). Each of these memory characteristics affect program-
ming language characteristics that are called locality and linearity.

Locality is the synesthetic characteristic of a programming language.
Locality is enhanced when statements may be combined into blocks, when
the structured constructs may be implemented directly, and when design
and resultant code are highly modular and cohesive (Chapter 10). A lan-
guage characteristic that supports or encourages exception handling (e.g.,
ON-condition processing in PL/1 or ERR = in extended versions of FOR-
TRAN) violates locality.

Linearity is a psychological characteristic that is closely associated with
the concept of maintenance of functional domain. That is, human percep-
tion is facilitated when a linear sequence of logical operations is encoun-
tered. Extensive branching (and, to some extent, large loops) violates the
linearity of processing. Again, direct implementation of the structured con-
structs aids programming language linearity.

Our ability to learn a new programming language is affected by tradi-
tion. A software engineer with a background in FORTRAN or ALGOL would
have little difficulty learning PL/1, PASCAL, or C. The latter languages
have a tradition established by the former. Constructs are similar, form is
compatible, and a sense of programming language “format” is maintained.
However, if the same individual were required to learn APL , LISP, or
Smalltalk, tradition would be broken and time on the learning curve would
be longer.

Tradition also affects the degree of innovation during the design of a
new programming language. Although new languages are proposed fre-
quently, new language forms evolve slowly. For example, PASCAL is a close
relative of ALGOL. However, a major innovation in the PASCAL language
[JEN74] is an implementation of user-defined data types, a form that does
not exist in earlier languages tied to PASCAL by tradition. Ada, a language
that has also grown out of the ALGOL-PASCAL tradition, extends beyond
both languages with a wide variety of innovative structures and typing.

The psychological characteristics of programming languages have an
important bearing on our ability to learn, apply, and maintain them. In
summary, a programming language colors the way we think about programs
and inherently limits the way in which we communicate with a computer.
Whether this is good or bad remains an open question.

16.2.2 A Syntactic/Semantic Model

Shneiderman [SHN80] has developed a syntactic-semantic model of the
programming process that has relevance in a consideration of the coding
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step. When a programmer applies software engineering methods (e.g., re-
quirements analysis, design) that are programming languagedndependent’
semantic knowledge is tapped. Syntactic knowledge, on the other hang,
is language-dependent, concentrating on the characteristics of a specific
language.

Of these knowledge types, semantic knowledge is the more difficult to

acquire and the more intellectually demanding to apply. All software engi-
neering steps that precede coding make heavy use of semantic knowledge,
The coding step applies syntactic knowledge that is “arbitrary and instryc.
tional” and learned by rote [SHN80]. When a new programming language ig
learned, new syntactic information is added to memory. Potential confusion
may occur when the syntax of a new programming language is similar byt
not equivalent to the syntax of another language. It should be noted, however,
that a new programming language can serve to force the software engineer
to learn new semantic information as well. For example, the Ada program-
ming language has caused many software engineers to rethink their ap-
proach to the design and implementation of software-based systems.

When arguments about the compelling need to “generate code” arise,
the listener should realize that many problems associated with computer
software have not been caused by a lack of syntactic knowledge. The prob-
lem lies in the scope of our semantic knowledge and our ability to apply it.
The goal of software engineering is to expand the knowledge of the seman-
tics of software development.

16.2.3 An Engineering View

A software engineering view of programming language characteristics
focuses on the needs of a specific software development project. Although
esoteric requirements for source code may be derived, a general set of engi-
neering characteristics can be established: (1) ease of design to code transla-
tion, (2) compiler efficiency, (3) source code portability, (4) availability of
development tools, and (5) maintainability.

The coding step begins after a detail design has been defined, reviewed,

and modified, if necessary. In theory, source code generation from adetail

design specification should be straightforward. Ease of design to code

translation provides an indication of how closely a programming language .

mirrors a design representation. As we discussed in Section 16.1, a lan-

guage that directly implements the structured constructs, sophisticated °

data structures, specialized I/O, bit manipulation capabilities, and object-

oriented constructs will make translation from design to source code much

easier (if these attributes are specified in the design).

Although rapid advances in processor speed and memory density have

begun to mitigate the need for “superefficient code,” many applications sti_ll
require fast, “tight” (low memory requirement) programs. An on-going criti-
cism of high-level language compilers is directed at an inability to produce

\M gl
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fast, tight, executable code. Languages with optimizing compilers may be at-
tractive if software performance is a critical requirement.

Source code portability is a programming language characteristic that
may be interpreted in three different ways:

1. Source code may be transported from processor to processor and com-
piler to compiler with little or no modification.

2. Source code remains unchanged even when its environment changes (e.g.,
a new version of an operating system is installed).

3. Source code may be integrated into different software packages with
little or no modification required because of programming language
characteristics.

Of the three interpretations of portability, the first is by far the most com-
mon. Standardization (by the International Standards Organization—ISO—
and/or the American National Standards Institute —ANSI) continues to be a
major impetus for improvement of programming language portability. Un-
fortunately, most compiler designers succumb to a compelling urge to provide
“better” but nonstandard features for a standardized language. If portability
is a critical requirement, source code must be restricted to the ISO or AN SI
standard, even if other features exist.

Availability of development tools can shorten the time required to gen-
erate source code and can improve the quality of the code. Many program-
ming languages may be acquired with a suite of tools that include debugging
compilérs, source code formatting aids, built-in editing facilities, tools for
source code control, extensive subprogram libraries in a variety of applica-
tion areas, browsers, cross-compilers for microprocessor development,
macroprocessor capabilities, reverse engineering tools, and others. In fact,
the concept of a good “software development environment” (e.g., [BARB84],
[BENS9]) that includes both conventional and automated tools has been rec-
ognized as a key contributor to successful software engineering.

Maintainability of source code is critically important for all nontrivial
software development efforts. Maintenance cannot be accomplished until
software is understood. Earlier elements of the software configuration (i.e.,
design documentation) provide a foundation for understanding, but ulti-
mately source code must be read and modified according to changes in design.
Ease of design to code translation is an important element in source code
maintainability. In addition, self-documenting characteristics of a language
(e.g., allowable length of identifiers, labeling format, data type/structure
definition) have a strong influence on maintainability.

16.2.4 Choosing a Language

The choice of a programming language for a specific project must take into
account both engineering and psychological characteristics. However, the
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problem associated with choice may be moot if only one language is available -
or dictated by a requester. Meek [MEES80, p. 37] suggests a general philogg.
phy when a programming language must be chosen:

...the art of choosing a language is to start with the problem, decide what its -
requirements are, and their relative importance, since it will probably be impog. *:
sible to satisfy them all equally well (with a single language)...available Jan.
guages should be measured against a list of requirements. . ..

Among the criteria that are applied during an evaluation of available
languages are (1) general application area, (2) algorithmic and computg-
tional complexity, (3) environment in which software will execute, (4) per- =
formance considerations, (5) data structure complexity, (6) knowledge of
software development staff, and (7) availability of a good compiler or cross-
compiler. Applications area of a project is a criterion that is applied most
often during language selection. As we noted in Chapter 1, a number of major
software application areas have evolved and de facto standard languages
may be selected for each.

C is often the language of choice for the development of systems soft-
ware, while languages such as Ada, C, and Modula-2 (along with FORTRAN
and assembly language) are encountered in real-time applications. COBOL
is the language for business applications, but the increasing use of fourth-
generation languages has displaced it from its preeminent position. In the
engineering/scientific area, FORTRAN remains the predominant language
(although ALGOL, PL/1, PASCAL, and C have wide usage). Embedded soft-
ware applications make use of the same languages applied in systems and
real-time applications. The predominant language for personal computer -
users remains BASIC, but that language is rarely used by the developers of
personal computer software products —more likely choices are PASCAL or
C. Artificial intelligence applications make use of languages such as LISP,
PROLOG, or OPS5, although other more conventional programming lan-
guages are used as well.

The rush toward object-oriented software development across most
application domains has spawned many new languages and conventional
language dialects. The most widely used object-oriented programming lan-
guages are Smalltalk, C+ +, and Objective-C. But languages such as Eiffel,
Object-PASCAL, Flavors and many others are also used by growing num-
bers of software engineers.

The proliferation of “new and better” programming languages contin-
ues. Although many of these languages are attractive, it is sometimes better
to choose a “weaker” (old) language that has solid documentation and sup-
port software, is familiar to everyone on the software development team,
and has been successfully applied in the past. However, new languages
should be thoroughly evaluated and the transition from old to new should
occur, recognizing the psychological resistance to change that is encoun-
tered in all organizations. ‘
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16.2.5 Programming Languages and Software Engineering

Regardless of the software engineering paradigm, programming language
will have impact on project planning, analysis, design, coding, testing, and
maintenance. But the role of a programming language must be kept in per-
spective. Languages do provide the means for human-to-machine transla-
tion; however, the quality of the end result is more closely tied to the software
engineering activities that precede and follow coding.

During project planning, a consideration of the technical characteristics
of a programming language is rarely undertaken. However, planning for
support tools associated with resource definition may require that a specific ;
compiler (and associated software) or programming environment be speci- H
fied. Cost and schedule estimation may require learning-curve adjustments |
because of staff inexperience with a language. .

Once software requirements have been established,' the technical char-
acteristics of candidate programming languages become more important. If
complex data structures are required, languages with sophisticated data
structure support (e.g., PASCAL and others) would merit careful evaluation.
If high-performance, real-time capability is paramount, a language designed
for real-time application (e.g., Ada) or memory-speed efficiency (e.g., C) :
might be specified. If many output reports and heavy file manipulation are F
specified, languages like COBOL or RPG might fit the bill. Ideally, software i
requirements should precipitate the selection of a language that best fits the
processing to be accomplished. In practice, however, a language is often se- ;
lected because “it’s the only one we have running on our computer!”

The quality of a software design is established in a manner that is inde-
pendent of programming language characteristics (a notable exception is
object-oriented design, Chapter 12). However, language attributes do play a l!
role in the quality of an implemented design and affect (both consciously ;
and unconsciously) the way that design is specified. O

In Chapter 10 we discussed a number of qualitative and quantitative :
measures of good design. The concepts of modularity and module indepen- .
dence were emphasized. Technical characteristics of many programming =
languages can affect these design concepts during the implementation of the
design. To illustrate, consider the following examples:

Modularity is supported by nearly all modern programming languages.
COBOL, for example, supports a hierarchy of functions that integrates
various levels of procedural abstraction (Chapter 10) with the modularity
concept. The hierarchy consists of divisions, sections, paragraphs, sen- if!

't is important to note that the language to be used for implementation can dictate the require-
ments analysis method that is chosen. For example, the use of an object-oriented language such
as C++ might lead an analyst to choose OOA (Chapter 8) as the requirements analysis method.
The converse is, of course, also true.
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tences, and finally words. Each of these terms has a precise meaning ip
the language and helps to emphasize a modular implementation.

Module independence can be enhanced or subverted by language char.
acteristics. For example, the Ada package supports the concept of infor.
mation hiding while the use of internal procedures in PL/1 can lead to
extensive global data that increase module coupling.

Data design (discussed in Chapters 8 and 10) can also be influenced by
language characteristics. Programming languages such as Ada, C++, and -
Smalltalk support the concept of abstract data types—an important too]
in data design and specification. Other more common languages, such ag
PASCAL, allow the definition of user-defined data types and the direct im-
plementation of linked lists and other data structures. These features pro. -
vide the designer with greater latitude during the preliminary and detail
design steps.

In some cases, design requirements can only be satisfied when a lan-
guage has special characteristics. Per Brinch-Hansen [HAN78] describes a
set of language characteristics essential for implementation of a design that
specifies distributed processes that are executing concurrently and must
communicate and coordinate with one another. Languages such as concur-
rent PASCAL, Ada, or Modula-2 can be used to satisfy such designs.

The effect of programming language characteristics on the steps that
comprise software testing is difficult to assess. Languages that directly sup-
port the structured constructs tend to reduce the cyclomatic complexity
(Chapter 17) of a program, thereby making it somewhat easier to test. Lan-
guages that support the specification of external subprograms and proce-
dures (e.g., FORTRAN) make integration testing much less error-prone. On
the other hand, some technical characteristics of a language can impede
testing. For example, block structuring in ALGOL can be specified in a
manner that causes the loss of intermediate data when exit from a block oc-
curs, thereby making the status of a program more difficult to assess.

Like testing, the effect of programming language characteristics on
software maintenance is not fully understood. There is no question, how-
ever, that technical characteristics that enhance code readability and reduce
complexity are important for effective maintenance. Further discussion of
software maintenance is postponed until Chapter 20.

PROGRAMMING LANGUAGE FUNDAMENTALS

The technical characteristics of programming languages span an enormous
number of topics that range from theoretical (e.g., formal language theory .
and specification) to pragmatic (e.g., functional comparisons of specific lan- &
guages). In this section, a brief discussion of programming language fun-
damentals is presented. For more detailed discussions of programming
language technology, the reader should reference Pratt [PRA84] or Sebesta
[SEB89].
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For the purposes of our discussion, programming language fundamentals
will be presented within the context of four broad topics: data typing, sub-
program mechanisms, control structures, and support for object-oriented ap-
proaches. All programming languages can be characterized with respect to
these topics and the overall quality of a specific programming language can
be judged with regard to the strengths and weakness related to each topic.

16.3.1 Data Types and Data Typing

Today, the merits of a modern programming language are judged by more
than the syntax and breadth of its procedural constructs. Data typing, and
the specific data types supported by a programming language, are an impor-
tant aspect of language quality.

Pratt [PRA84] describes data types and data typing as “...a class of
data objects together with a set of operations for creating and manipulating
them.” A data object inherits a set of fundamental attributes of the data
type to which it belongs. A data object can take on a value that resides within
the range of legitimate values for the data type and can be manipulated by
operations that apply to the data type.

Simple data types span a wide range that includes numeric types (e.g.,
integer, complex, floating-point numbers), enumeration types (e.g., user-
defined data types found in PASCAL), boolean types (e.g., true or false), and
string types (e.g., alphanumeric data). More complex data types encompass
data structures that run the gamut of simple one-dimensional arrays (vec-
tors) to list structures to complex heterogeneous arrays and records.

The operations that may be performed on a particular data type and the
manner in which different types may be manipulated in the same statement
is controlled by type checking implemented within the programming lan-
guage compiler or interpreter. Fairley [FAI85] defines five levels of type
checking that are commonly encountered in programming languages:

Level 0: typeless

Level 1: automatic type coercion
Level 2: mixed mode

Level 3: pseudostrong type checking
Level 4: strong type checking

Typeless programming languages have no explicit means for data typing
and, therefore, do not enforce type checking. Languages® such as BASIC,
APL, LISP, and even COBOL fall into this category. Although each language
does enable the user to define data structures, the representation of data
contained within each data object is predefined.

*References to programming languages in this chapter assume “typical” or ANSI standard im-
plementations. It is entirely possible that other versions of a language may exhibit characteris-
tics that contradict our discussion.
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Automatic-type coercion is a type checking mechanism that allows the
programmer to mix different data types, but then converts operands of in.
compatible types, thus allowing requested operations to occur. For example,
PL/1 assigns a numeric value of 0 to the boolean value false and a numerijc
value of 1 to the boolean value ¢rue. Hence arithmetic operations (normally
applied to numeric data types) can be applied to boolean data types in PL/].

Mixed mode-type conversion is similar in many respects to automatic-
type coercion. Different data types within the same type category (e.g., two
different numeric types) are converted to a single target type so that a speci-
fied operation can occur. FORTRAN’s mixed-mode arithmetic (a feature
that is best avoided) enables integer and real numbers to be used in a single
programming language statement.

Strong-type checking occurs in programming languages that will only
permit operations to be performed on data objects that are of the same pre-
specified data type. Operators, operands, and subprogram (module) inter-
faces are checked for type compatibility at compile time, at load time, and at
run time. Ada compilers perform strong-type checking.

Pseudostrong-type checking has all of the characteristics of strong-type
checking but is implemented in a manner that provides one or more loop-
holes [FAI85]. For example, although PASCAL checks interface compatibility
within a single compiled program, it does not do so for separately compiled
procedures (modules) —hence, there is a loophole in the enforcement of
strong-type checking.

16.3.2 Subprograms

A subprogram is a separately compilable program component that contains
a data and control structure. Throughout this book, we have referred to a
module as a generic manifestation of a subprogram. Depending on the pro-
gramming language, a subprogram may be called a subroutine, a procedure,
a function, or any of a number of specialized names. Regardless of its name,
the subprogram exhibits a set of generic characteristics: (1) a specification
section that includes its name and interface description; (2) an implementa-
tion section that includes data and control structure; (3) an activation
mechanism that enables the subprogram to be invoked from elsewhere in
the program.

In conventional programming languages, each subprogram is an entity
in itself, operating on data in a manner that is dictated by a larger pro-
gram’s control structure. In object-oriented programming languages, the
classic view of the subprogram is replaced with the object.

16.3.3 Control Structures

At a fundamental level, all modern programming languages enable the pro-
grammer to represent sequence, condition, and repetition—the structured
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programming logical constructs. Most modern languages provide a syntax
for direct specification of if-then-else, do-while, and repeat-until (as well as
case). Other languages, such as LISP and APL, require the programmer to
emulate the constructs within the syntax bounds of the language.

In addition to the basic procedural constructs of structured program-
ming, other control structures may be present. Recursion creates a second
activation of a subprogram during the first activation. That is, the subpro-
gram invokes or activates itself as part of the defined procedure. Concur-
rency provides support for the creation of multiple tasks, the synchronization
of tasks, and general communication between tasks. This language feature
is invaluable when real-time or systems applications are undertaken. Excep-
tion handling is a programming language feature that traps user-defined
or system error conditions and passes control to an exception handler for
processing.

16.3.4 Support for Object-Oriented Approaches

In theory, the creation of objects and the construction of object-oriented
software can be accomplished using any conventional programming lan-
guage (e.g., C or PASCAL). But in practice, support for object-oriented ap-
proaches should be built directly into the programming language that will be
used to implement an object-oriented design.

The fundamental concepts that underlie object-oriented programming
were presented in Chapters 8 and 12. In addition to the features discussed
in Sections 16.3.1 through 16.3.3, an object-oriented programming language
should provide direct support for class definitions, inheritance, encapsula-
tion, and messaging. In addition to these basic object-oriented constructs,
many object-oriented languages implement additional features, such as mul-
tiple inheritance and polymorphism (different objects can receive messages
with the same name).

The definition of classes is basic to an object-oriented approach. An
object-oriented programming language defines a class name and specifies
the private and public components of the class. To illustrate the general form
of the object-oriented constructs, we use C++. A class, called counter, can
be defined in the following manner [WEI88]:

class counter
{
private:
unsigned int value;
public:
counter ( );
void increment ( );
void decrement ( );
unsigned int access_value ( );
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A new class can be derived from the basic class definition in the following
manner:

class special_counter : public counter

{
a copy of the private data of counter
private:
data private to special_counter
1

Objects derived from the class special_counter can use all methods defined
for the “parent class” counter. The definition of a class encapsulates data ab-
stractions and the program components (methods) that operate on them. In
C++, messages are sent to an object (an instantiation of a class) using the
form

object_name.message (arguments);

where object_name identifies the object and message (arguments) describes
the message to be sent to it.

The implementation details and the terminology for class definitions,
inheritance, encapsulation, and messaging will vary from language to lan-
guage. For example, the Smalltalk programming language [PIN88] defines a
class using the following form:

e Definition —identifies the class

e Private data—attributes whose values are private to individual instances
of the class

e Shared data—attributes whose values are shared by all instances of the

class
o Pool data—attributes whose values are shared across multiple classes

e Instance methods—the procedures that implement messages that can be .

sent to an instance of a class

e Class methods—the procedures that implement messages that can be sent
to a class (e.g., initialize shared data)

Although these terms differ from the C++ definition, the fundamental con-
cept of the class remains unchanged. Similarly, inheritance, encapsulation,
and messaging are implemented with a different syntax, but the same fun-
damental semantics. Each construct will be available in any language that is
truly object-oriented.

T
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LANGUAGE CLASSES

FIGURE 16.1.
Programming
language
generations.

There are hundreds of programming languages that have been applied at
one time or another to serious software development efforts. Even a detailed
discussion of the five most common languages is beyond the scope of this
book. The reader is referred to Pratt [PRA84] and Sebesta [SEB89] for thor-
ough surveys and comparisons of the most common programming lan-
guages. In this section, four generations of programming languages are
described and representative languages from each generation are discussed.

Any categorization of programming languages is open to debate. In
many cases, one language might legitimately reside in more than one cate-
gory. For the purposes of this book, we develop a set of language generations
that correspond roughly to the historical evolution of programming lan-
guages. Figure 16.1 illustrates this categorization.

16.4.1 First-Generation Languages

The first language generation harkens back to the days of machine-level cod-
ing. Yet, some work with first-generation languages continues to this date.
Machine code and its more human-readable equivalent —assembler lan-
guage—represent the first language generation. These machine-dependent
languages exhibit the lowest level of abstraction with which a program can
be represented.

There are as many assembler languages as there are processor architec-
tures with custom instruction sets. From a software engineering viewpoint,
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such languages should be used only when a high-order language cannot
meet requirements or is.not supported.

16.4.2 Second-Generation Languages

Second-generation languages were developed in the late 1950s and early
1960s and serve as the foundation for all modern (third-generation) pro-
gramming languages. Second-generation languages are characterized by
broad usage, enormous software libraries, and the widest familiarity and
acceptance. There is little debate that FORTRAN, COBOL, ALGOL, and (to
some extent) BASIC are foundation languages by virtue of their maturity
and acceptance.

FORTRAN has withstood 30 years of criticism to remain the premier
programming language in engineering/scientific work.” The original stan-
dardized version of FORTRAN (called “FORTRAN-66") provided a power-
ful tool for computational problem solving, but lacked direct support of the
structured constructs, had poor data typing, could not easily support string
handling, and had many other deficiencies. The newer ANSI standard
(called “FORTRAN-77”) and the forthcoming standard correct some of the
deficiencies found in earlier versions of the language. In many cases FOR-
TRAN has been force-fit into application areas for which it was never de-
signed and much of the criticism of the language has been somewhat unfair.
For number crunching applications, FORTRAN remains the language of
choice, but for system, real-time, or embedded product software applica-
tions, other languages provide compelling advantages.

COBOL, like FORTRAN, has reached maturity and is the accepted
“standard” language for commercial data processing applications. Although
the language is sometimes criticized for a lack of compactness, it has excel-
lent data definition capabilities, is largely self-documenting, and provides
support for a wide range of procedural techniques relevant to business data
processing.

ALGOL is the forerunner of many third-generation languages and of-
fers an extremely rich repertoire of procedural and data typing constructs.
ALGOL has been used extensively in Europe, but has found little support
(with the exception of academic environments) in the United States. The
most commonly used version of the language, correctly termed “ALGOL-
60,” has been extended to a more powerful implementation, ALGOL-68.
Both versions of the language support the notion of block structuring, dy- 3
namic storage allocation, recursion, and other characteristics that have had
a strong influence on the modern languages that have followed.

SFORTRAN’s dominance in engineering applications is starting to wain. Ada, C, and, to &
lesser extent, PASCAL are replacing FORTRAN in many application domains. However, FOR-
TRAN will be used widely well into the twenty-first century.
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BASIC is a language that was originally designed to teach programming
in a time-sharing mode. The language was moving toward obsolescence in
the early 1970s, but has experienced a rebirth with the advent of personal
computer systems. There are hundreds of versions of BASIC, making it dif-
ficult to discuss the benefits and deficiencies of the language.

16.4.3 Third-Generation Languages

Third-generation languages (also called modern or structured program-
ming languages) are characterized by strong procedural and data structur-
ing capabilities. The languages in this class can be divided into three broad
categories, general-purpose high-order languages, object-oriented high- |
order languages, and specialized languages. All general-purpose and object- l‘
oriented high-order languages exhibit the technical characteristics dis-
cussed in Section 16.3. Specialized languages, on the other hand, have been
designed to satisfy special requirements and have a syntax and form that
are often unique.

General-Purpose High-Order Languages The earliest general-purpose i
high-order language (also a foundation language), ALGOL, served as a {l
model for other languages in this category. Its descendents, PL/1, PASCAL, 5
Modula-2, C, and Ada are being adopted as languages with the potential for i
broad spectrum applications (i.e., for use in engineering/scientific, embed- il
ded products, commercial, and/or systems application areas).

PL/1 might more properly be categorized as a 2.5-generation language.
It was the first true broad-spectrum language, developed with a wide range
of features that enable it to be used in many different application areas. PL/1
provides support for conventional engineering/scientific and business appli-
cations while at the same time enabling specification of sophisticated data ‘
structures, multitasking, complex I/O, list processing, and many other fea- s
tures. Subsets of the language have been developed to teach programming G
(PL/C), for use in microprocessor applications (PL/M), and for systems pro- ;§ )
gramming (PL/S). E

PASCAL is a modern programming language that was developed in the o
early 1970s as a language for teaching modern techniques (e.g., structured L
programming) in software development. Since its introduction, PASCAL has
found growing support from a broad audience of software developers and is
used widely for engineering/scientific applications and systems program- P
ming (the language has been called “the FORTRAN of the 1980s”). PASCAL !
is a direct descendent of ALGOL and contains many of the same features: .
block structuring, strong data typing, direct support for recursion, and other
complementary features. It has been implemented on computers of all sizes.

Modula-2 is an evolutionary outgrowth of PASCAL and (some would say)
a possible alternative to the Ada programming language. Modula-2 couples
direct implementation of design features such as information hiding, ab-




530

PART 3: THE DESIGN AND IMPLEMENTATION OF SOFTWARE

straction, and strong data typing with control structures to support recur-
sion and concurrency. To date, the use of Modula-2 for industry applications
has been limited.

The C programming language was originally developed as a language for
operating system implementers. The UNIX operating system is implemented
in C. Today, however, a vast array of software products, embedded applica-
tions, and systems software has been built using the C language. C was devel-
oped for the sophisticated software engineer and contains powerful features
that give it considerable flexibility. These same features can also create
problems. Cox [COX85] provides a poetic description of the language:

One of my favorite hobbies is green wood working. A project begins not in
the lumber yard with Kiln dried wood, but in the forest. A straight-grained oak
tree is cut down, and worked into rustic furniture with an awe-inspiring assort-
ment of antique tools. ...

The tools of this hobby have a lot in common with the tools I use as a pro-
grammer. For example, the adze is a heavy blade on a four foot handle (like a
hoe). It is a specialized tool, whose primary function is smoothing the rough sur-
faces of a split log. It is swung double-handed, standing astraddle the work. The
razor sharp blade removes six-inch slabs of solid oak with a single blow, scant
inches from unprotected feet and legs!

I love that adze the way I love the C language. It is not a tool for fools and
children. But in the hands of a skilled craftsman, it is capable of powerful, yet
delicate work. Its potential for grave harm is so obvious that the danger provides
the only safety mechanism; a healthy respect for what careless use can do!

Like other languages in this category, C supports sophisticated data
structures and has reasonable typing characteristics, makes extensive use
of pointers, and has a rich set of operators for computation and data ma-
nipulation. In addition, it enables the programmer to “get close to the ma-
chine” by providing assembly language-like features.

Ada was originally developed as a new standard language for embedded
real-time computer systems to be developed for the U.S. Department of De-
fense. Today, the language is used widely in both defense and nondefense
applications. Pascal-like in structure and notation (but far more powerful
and complex), Ada supports a rich set of features that include multitasking,
interrupt handling, intertask synchronization, and communication as well
as a set of unique features such as the Ada package. Ada has created and
continues to generate much controversy. Adherents praise its rich language
structure and the focus on the Ada environment for software engineering
rather than language-related esoterica. Opponents worry about the complex-
ity of the language, the current inefficiency of operational compilers, and
the long learning curve. It appears, however, that the benefits of the language
will win out and that Ada may well dominate some application domains dur-
ing the 1990s.
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Object-Oriented Languages Object-oriented programming languages en-
able a software engineer to implement analysis and design models created
using OOA and OOD (Chapters 8 and 12). Thesée languages have characteris-
tics described in Section 16.4.3.

Although dozens of object-oriented languages have been introduced over
the past decade, only a few have gained any significant foothold in the mar-
ketplace: dialects of C (e.g,, C++, Objective-C), Smalltalk, and Eiffel.
Smalltalk, a “foundation” object-oriented language, was originally devel-
oped in the early 1970s to explore object-oriented concepts. Today, versions
of Smalltalk are available on computers of all types, although the use of the
language for the development of products and industry quality systems is
limited. Object-oriented dialects of C have gained widespread use through-
out the UNIX community and with many first-time developers of object-
oriented systems. Building on the strengths of C, object-oriented dialects
enable a smooth transition from this widely used, general-purpose, high-
order language. Eiffel [MEY88] is one of a number of “new” object-oriented
languages that are robust enough for industry application. Like C dialects
and Smalltalk, Eiffel provides direct support for class definitions, inheri-
tance, encapsulation, and messaging.

Specialized Languages Specialized languages are characterized by un-
usual syntactic forms that have been especially designed for a distinct appli-
cation. Hundreds of specialized languages are in use today. In general, such
langusiges have a much smaller user base than general-purpose languages.
Among the languages that have found application within the software engi-
neering community are LISP, PROLOG, APL, and FORTH.

LISP is a language that is especially suited to symbol manipulation and
the list processing encountered in combinatorial problems. Used almost ex-
clusively by the artificial intelligence community, the language is particu-
larly well suited to theorem proving, tree searches, and other problem-solving
activities. Subprograms are implemented as functions that make heavy use
of recursion. Because each LISP function is a standalone entity, reusability
can be achieved by creating libraries of primitive functions. In recent years,
LISP has been used to develop a wide array of expert systems and expert
system “compilers.” LISP makes it relatively easy to specify facts, rules, and
the corresponding inferences (implemented as LISP functions) that are re-
quired for knowledge-based systems.

PROLOG is another programming language that has found widespread
use in the construction of expert systems. Like LISP, PROLOG provides fea-
tures that support knowledge representation. Within the language, a uni-
form data structure, called the term, is used to construct all data and all
programs. Each program consists of a set of clauses that represent facts,
rules, and inferences. Both LISP and PROLOG are especially amenable to
problems that treat objects and their relationships. For this reason, some
people refer to LISP and PROLOG as object-oriented languages. In addition,
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the object-oriented nature of LISP and PROLOG enables each to be applied
within the context of the prototyping paradigm for software engineering.

APL is an extremely concise and powerful language for array and vector
manipulation. The language contains little support for structured constructs
or data typing. APL does provide a rich set of computational operators and
has gained a small but avid following for mathematical problem solving.

FORTH is a language designed for microprocessor software development,
The language supports the definition of user-defined functions [implemented
with post-fix (reverse-Polish) notation] that are executed in a stack-oriented
manner for speed and memory efficiency.

From a software engineering standpoint, specialized languages provide
both advantages and disadvantages. Because a specialized language hasg
been designed to address a specific application, the translation of require-
ments to design to code implementation can be facilitated. On the other
hand, most specialized languages are far less portable and often less main-
tainable than general-purpose languages.

16.4.4 Fourth-Generation Languages

Throughout the history of software development, we have attempted to gen-
erate computer programs at higher and higher levels of abstraction. First-
generation programming languages worked at the machine instruction set
level, the lowest possible level of abstraction. Second- and third-generation
programming languages have raised the level at which we represent com-
puter programs, but distinct and completely detailed algorithmic procedures
still have to be specified. Over the past decade, fourth-generation languages
(4GLs) have raised the level of abstraction still higher.

Fourth-generation languages, like all artificial languages, contain a dis-
tinct syntax for control and data structure representation. A 4GL, however,
represents these structures at a higher level of abstraction by eliminating
the need to specify algorithmic detail. For example, the statement:

COMPUTE NET-PRESENT-VALUE AND RETURN-ON-INVESTMENT FOR
EXPENDITURES #5 AND #9.

is typical of a 4GL statement. The 4GL system “knows” how to compute the
desired financial data and does so without requiring the software developer
to specify the appropriate algorithms. It should be apparent that the “knowl-
edge” described above is domain-specific. That is, the same 4GL would un-
doubtedly choke on:

COMPUTE THE ROOTS OF TRANSCENDENTAL EQUATION #3 AND APPLY
THEM TO THE PHYSICAL MODEL.

although another 4GL, designed specifically for the application domain im-
plied above, might do the job nicely.
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Fourth-generation languages combine procedural and nonprocedural
characteristics. That is, the language enables the user to specify conditions
and corresponding actions (the procedural component) while at the same
time encouraging the user to indicate the desired outcome (the nonproce-
dural component) and then applying its domain-specific knowledge to fill in
the procedural details.

Martin ((MARS85], IMARS86]) presents a comprehensive discussion of
4GLs and develops the following broad categories.

Query Languages To date, the vast majority of 4GLs have been developed
for use in conjunction with database applications. Such query languages en-
able the user to manipulate information contained in a pre-existing data-
base in a sophisticated manner. Some query languages require a complex
syntax that is no simpler (and in some cases, worse) than a third-generation
language. For example [MARS5]:

list by region (87.act.sep.sales)
sum (87.est.sep.sales), (sum (sum (87.act.sep.sales)

However, other query languages available today offer a natural language in-
terface that allows the user to state [INT86]:

For the eastern and western regions, how did actual sales for last
month compare with forecasts?

2
s

Needless to say, the second approach would be favored by most users.

Program Generators Program generators represent another, somewhat
more sophisticated, class of 4GLs. Rather than relying on a predefined data-
base as its point of focus, a program generator enables the user to create
complete third-generation language programs using (many claim) an order-
of-magnitude fewer statements. These very-high-level programming lan-
guages make heavy use of procedural and data abstractions (Chapter 10).
Unfortunately for those working in the engineered products and systems do-
main, most program generators available today focus exclusively on business
information systems applications and generate programs in COBOL. How-
ever, a new generation of CASE tools enables a software engineer to model
an engineering application graphically and then generate C or Ada source
code from the graphical model.

Other 4GLS Although query languages and application generators are the |
most common 4GLs, other categories exist. Decision support languages en-
able “nonprogrammers” to perform a variety of what-if analyses that range
from simple two-dimensional spreadsheet models to sophisticated statistical : “
or operations research modeling systems. Prototyping languages have been {
developed to assist in creating prototypes by facilitating the creation of user |
interfaces and dialogs and providing a means for data modeling. Formal
specification languages (discussed in Chapter 9) can be considered to be
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4GLs when such languages produce machine-executable software. Finally,
tools used in a personal computer environment (e.g., spreadsheets, database
systems, Macintosh Hypercard) enable the user to “program” at a higher
level of abstraction than previously available.

CODING STYLE

After source code is generated, the function of a module should be apparent
without reference to a design specification. In other words, code must be un-
derstandable. Coding style encompasses a coding philosophy that stresses
simplicity and clarity. In their landmark text on the subject, Kernighan and
Plauger [KER78, p. 9] state:

Writing a computer program eventually boils down to writing a sequence of
statements in the language at hand. How each of those statements is expressed
determines in large measure the intelligibility of the whole....

The elements of style include internal (source code level) documentation,
methods for data declaration, an approach to statement construction, and
techniques for I/O. In the sections that follow, we consider each of these topics.

16.5.1 Code Documentation

Internal documentation of source code begins with the selection of identi-
fier (variables and labels) names, continues with the placement and compo-
sition of commenting, and concludes with the visual organization of the
program.

The selection of meaningful identifier names is crucial to understand-
ing. Languages that limit variable names or labels to only a few characters
inherently obscure meaning. Consider the following three statements:

D=V*T
DIST= HORVEL*TIME
DISTANCE= HORIZONTAL.VELOCITY * TIME.TRAVELED.IN.SECS;

The BASIC language expression is undeniably concise, but the meaning of
D = V*T is unclear unless the reader has prior information. The FORTRAN
expression provides more information, but the meaning of DIST and HORVEL
could be misinterpreted. The ALGOL statement leaves little doubt regard-
ing the meaning of the calculation. These statements illustrate the way in
which identifiers may be chosen to help document code.

It can be argued that “wordy” expressions (like the ALGOL statement
above) obscure logical flow and make modification difficult. Obviously, com-
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mon sense must be applied when identifiers are selected. Unnecessarily long
identifiers do indeed provide a potential for error (not to mention a back-
ache from sitting long hours typing at a workstation). Studies [SHN8O0] indi-
cate, however, that even for small programs meaningful identifiers improve
comprehension. In terms of the syntactic/semantic model discussed in
Section 16.2.2, meaningful names “simplify the conversion from program
syntax to internal semantic structure” [SHN80].

The ability to express natural language comments as part of a source
code listing is provided by all general-purpose programming languages.
However, certain questions arise:

¢ How many comments are “enough”

e Where should the comments be placed?

e Do comments obscure logic flow?

e Can comments mislead the reader?

e Are comments “unmaintainable,” and therefore unreliable?

There are few definitive answers to the above questions. But one thing is
clear: Software must contain internal documentation. Comments provide
the developer with one means of communicating with other readers of the
source code. Comments can provide a clear guide to understanding during
the last phase of software engineering—maintenance.

There are many guidelines that have been proposed for commenting.
Prologue comments and functional comments are two categories that re-
quire somewhat different approaches. Prologue comments should appear at
the beginning of every module. The format for such comments is:

1. A statement of purpose that indicates the function of the module
2. An interface description that includes
a. a sample “calling sequence”
b. a description of all arguments
c. a list of all subordinate modules
3. A discussion of pertinent data such as important variables and their use
restrictions and limitations, and other important information
4. A development history that includes
a. the name of the module designer (author)
b. the name of the reviewer (auditor) and date
c. modification dates and description

An example of prologue comments is given in Figure 16.2.

Descriptive comments are embedded within the body of source code and
are used to describe processing functions. A primary guideline for such com-
menting is expressed by VanTassel [VAN78]: “comments should provide

o g
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TITLE: " SUBROUTINE NGON

PURPOSE: THE PURPOSE OF TO CONTROL THE DRAWING OF NGONS.
SAMPLE CALL:  CALL NGON (KNOW, IX, 1Y, KN)

INPUTS: KROW = IS THE LINE ON THE TABLE WHERE THE
NEXT LINE OF OUTPUT WILL BE PRINTED.
IX = X-COORDINATE OF THE LEFT END OF THE
BOTTOM SEGMENT
Y = Y-COORDINATE OF THE LEFT END OF THE !
BOTTOM SEGMENT
KN = IS THE NUMBER OF THE LAST NGON
OUTPUTS: KROW = IS THE INCREMENTED ROW COUNTER
KN = IS THE INCREMENTED NGON COUNTER
SUBROUTINES REFERENCED: 1.) DBNGON
2.) ALPHA
3.) ROWCOL

PERTINENT DATA:

KROW IS CHECKED TO SEE IF THE TABLE IS FULL.

IFIT IS THEN REPNT IS CALLED TO REFRESH THE SCREEN
AND PUT UP A NEW TABLET. THENGON COUNTER (KN) IS
INCREMENTED AND THE POINTER ARRAY PO IS WRITTEN
TO THE DISPLAY FILE.

A PROMPT IS THEN ISSUED FOR THE NUMBER OF
SIDES AND THE ORIENTATION OF THE NGON WITH
RESPECT TO THE X-AXIS. THE ARRAY 'NG' IS LOADED
AND WRITTEN TO THE OBJECT FILE.

THEN ROUTINE DBNGON DOES THE ACTUAL DRAWING.

IT REQUIRES THE NUMBER OF SIDES, THE LENGTH OF A
SIDE, THE ORIENTATION, AND THE COORDINATES OF THE
STARTING POINT AND IPEN.

AUTHOR: M. WRIGHT
AUDITOR:  D. CURRIE
DATE: 2/15/90
MODIFICATIONS:

11/29/90 D.C.
CHANGES MADE TO ALLOW TABLES TO BE BUILT FOR REPNT.

1/7/91 R.P.S. '
FIGURE 16.2. ADD ERROR CHECKING COMMON 'SPECIAL' AND ERROR HANDLING. !

Code documentation. L

something extra, not just paraphrase the code.” In addition, descriptive com- ¢
ments should

* Describe blocks of code, rather than commenting every line.
e Use blank lines or indentation so that comments can be readily dlstm- o
guished from code.

e Be correct; an incorrect or misleading comment is worse than no comment
at all.
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With proper identifier mnemonics and good commenting, adequate internal
documentation is assured. '

When a detailed procedural design is represented using a program de-
sign language (Chapter 10), design documentation can be embedded directly
into the source listing as comment statements. This technique is particu-
larly useful when implementation is to be done in assembler language and
helps to ensure that both code and design will be maintained when changes
are made to either.

The form of the source code as it appears on the listing is an important
contributor to readability. Source code indentation indicates logical con-
structs and blocks of code by indenting from the left margin so that these
attributes are visually offset. Like commenting, the best approach to inden-
tation is open to debate. Manual indentation can become complicated as
code modification occurs, and experiments [SHN80] indicate that only a
marginal improvement in understanding accrues. Probably the best ap-
proach is to use an automatic code formatter (a CASE tool) that will prop-
erly indent source code. By eliminating the burden of indentation from the
coder, form may be improved with relatively little effort.

16.5.2 Data Declaration

The complexity and organization of data structure are defined during the
desigh step. The style of data declaration is established when code is gener-
ated. A number of relatively simple guidelines can be established to make
data more understandable and maintenance simpler.

The order of data declarations should be standardized even if the pro-
gramming language has no mandatory requirements. For example, declara-
tion ordering for a FORTRAN module might be:

1. All explicit declarations (for high quality, all variables should be declared)
INTEGER, REAL, DOUBLE PRECISION, ...

2. All global data blocks
COMMON/block-name/. . .

3. All local arrays

DIMENSION array names and dimensions

4. All file declarations

DEFINE FILE, OPEN, CLOSE

Ordering makes attributes easier to find, expediting testing, debugging, and
maintenance.




538

PART 3: THE DESIGN AND IMPLEMENTATION OF SOFTWARE

When multiple variable names are declared with a single statement, ay,
alphabetical ordering of names is worthwhile. Similarly, labeled global datg
(e.g., FORTRAN common blocks) should be ordered alphabetically.

If a complex data structure is prescribed by design, commenting shoulq
be used to explain peculiarities inherent in a programming language imple.
mentation. For example, a linked list data structure in C or a user-defineq
data type in PASCAL might require supplementary documentation con-
tained in comments.

16.5.3 Statement Construction

The construction of software logical flow is established during design. The
construction of individual statements, however, is part of the coding step.
Statement construction should abide by one overriding rule: Each statement
should be simple and direct; code should not be convoluted to effect efficiency.

Many programming languages allow multiple statements per line. The
space saving aspects of this feature are hardly justified by the poor readabil-
ity that results. Consider the following two code segments:

DOI=1TON-1;T=DOJ=1+1TON; FA{J) < A(T) THEN DO T=J;
END;
IFT <> I THEN DO H=A(T); A(T)=A(l); A(l)=T: END; END;

The loop structure and conditional operations contained in the above segment
are masked by the multistatement-per-line construction. Reorganizing the
form of the code:

DO 1= 1TO N-1;
=

DOJ=I1+1TON;
IF A(J) < A(T) THEN DO

T=J;
END;

IFT <> 1 THEN DO
H=A(T);
A(T)=A(l);
Al=T;

END;

END;

Here, simple statement construction and indentation illuminates the logical
and functional characteristics of the segment. Individual source code state-
ments can be simplified by
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e Avoiding the use of complicated conditional tests

¢ Eliminating tests on negative conditions

e Avoiding heavy nesting of loops or conditions

e Using parentheses to clarify logical or arithmetic expressions

e Using spacing and/or readability symbols to clarify statement content

e Using only ANSI standard features

e Thinking: Could I understand this if I was not the person who coded it?

Each of the above guidelines strives to “keep it simple.”

16.5.4 Input/Output

The style of input and output is established during software requirements
analysis and design, not coding. However, the manner in which I/O is imple-
mented can be the determining characteristic for system acceptance by a
user community. Input and output style will vary with the degree of human
interaction. For batch-oriented I/O, logical input organization, meaningful
input/output error checking, good I/O error recovery, and rational output re-
port formats are desirable characteristics. For interactive 1/0, a simple,
guided input scheme, extensive error checking and recovery, human-
engineered output, and consistency of 1/O format become primary concerns.*

Hegardless of the batch or interactive nature of software, a number of
1/O style guidelines should be considered during design and coding:

e Validate all input data.

e Check the plausibility of important combinations of input items.

e Keep the input format simple.

e Use end-of-data indicators, rather than requiring a user to specify “num-
ber-of-items.”

e Label interactive input requests, specifying available choices or bounding
values.

e Keep the input format uniform when a programming language has strin-
gent formatting requirements.

e Label all output and design all reports.

The style of I/O is affected by many other characteristics such as I/O devices
(e.g., terminal or workstation type, computer graphics device, mouse, etc.),
user sophistication, and communication environment.

‘See Chapter 14 for additional guidelines on the design of human-computer interfaces.
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EFFICIENCY

In well-engineered systems, there is a natural tendency to use critica] re
sources efficiently. Processor cycles and memory locations are often Viewe,
as critical resources, and the coding step is seen as the last point where mj
croseconds or bits can be squeezed out of the software. Although efficieng,
is a commendable goal, three maxims should be stated before we discusg the
topic further. First, efficiency is a performance requirement and should
therefore, be established during software requirements analysis. Softwar,
should be as efficient as is required, not as efficient as is humanly possib]e
Second, efficiency is improved with good design. Third, code efficiency an
code simplicity go hand in hand. In general, don’t sacrifice clarity, readabij]-
ity, or correctness for nonessential improvements in efficiency.

16.6.1 Code Efficiency

The efficiency of source code is directly tied to the efficiency of algorithmg
defined during detail design. However, coding style can have an effect on
execution speed and memory requirement. The following set of guidelineg
can always be applied when detail design is translated into code:

e Simplify arithmetic and logical expressions before committing to code.

e Carefully evaluate nested loops to determine if statements or expressions
can be moved outside.

e When possible, avoid the use of multi-dimensional arrays.

e When possible, avoid the use of pointers and complex lists.

e Use “fast” arithmetic operations.

® Don’t mix data types, even if the language allows it.

¢ Use integer arithmetic and boolean expressions, whenever possible.

Many compilers have optimizing features that automatically generate effi-
cient code by collapsing repetitive expressions, performing loop evaluation,
using fast arithmetic, and applying other efficiency-related algorithms. For
applications in which efficiency is paramount, such compilers are an indis-
pensable coding tool.

16.6.2 Memory Efficiency

Memory restrictions in the large machine (“mainframe”) and workstation
world are largely a thing of the past. Low-cost memory provides a large
physical address space and virtual memory management provides applica-
tion software with an enormous logical address space. Memory efficiency for
such environments cannot be equated to minimum memory used. Rather,
memory efficiency must take into account the “paging” characteristics of an
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16.7

operating system. In general, code locality or maintenance of functional do-
main via the structured constructs is an excellent method for reducing pag-
ing and thereby increasing efficiency.

Memory restrictions in the embedded microprocessor world are a very
real concern, although low-cost, high-density memory is evolving rapidly. If
minimal memory is demanded by system requirements (e.g., a high-volume,
low-cost product), high-order language compilers must be carefully evaluated
for memory compression feature, or, as a last resort, assembler language
may have to be used.

Unlike many other system characteristics that must be traded against
one another, techniques for execution time efficiency can sometimes lead
to memory efficiency. For example, limiting the use of three- or four-
dimensional arrays results in simple element access algorithms that are fast
and short. Again, the key to memory efficiency is “keep it simple.”

16.6.3 Input/Output Efficiency

Two classes of I/O should be considered when efficiency is discussed: I/O di-
rected at a human or I/O directed to another device (e.g., a disk or another
computer). Input supplied by a user and output produced for a user are effi-
cient when the information can be supplied or understood with an economy
of intellectual effort.

Efficiency of I/O to other hardware is an extremely complicated topic
and is beyond the scope of this book. From the coding (and detail design)
standpoint, however, a few simple guidelines that improve I/O efficiency can
be stated:

e The number of I/O requests should be minimized.
o All I/O should be buffered to reduce communication overhead.

e For secondary memory (e.g., disk), the simplest acceptable access method
should be selected and used.

e I/O to secondary memory devices should be blocked.

e I/O to terminals and printers should recognize features of the device that
could improve quality or speed.
e Remember that “superefficient” I/O is worthless if it can’t be understood.

As we noted earlier in this chapter, I/O design establishes style and ulti-
mately dictates efficiency. The guidelines presented above are applicable to
both design and coding steps of the software engineering process.

SUMMARY

The coding step of software engineering is a process of translation. Detail
design is translated into a programming language that is ultimately (and
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automatically) transformed into machine-executable instructions. Psycho.
logical and technical characteristics of a programming language affect the
ease of translation from design and the effort required to test and maintaip
software. These characteristics may be applied to programming languageg
that fall into one of four language generations.

Style is an important attribute of source code and can determine the in-
telligibility of a program. The elements of style include internal documentg.
tion, methods for data declaration, procedures for statement construction,
and I/O coding techniques. In all cases, simplicity and clarity are key char.
acteristics. An offshoot of coding style is the execution time and/or memory
efficiency that are achieved. Although efficiency can be an extremely impor-
tant requirement, we should remember that an “efficient” program that is
unintelligible has questionable value.

Coding lies at the kernel of the software engineering process. Critically
important steps have preceded coding, relegating it to a somewhat mecha-
nistic translation of a detail design specification. Equally important steps
follow coding, and it is a discussion of these steps and related topics that
constitute the next part of this book.
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PROBLEMS AND POINTS TO PONDER

16.1

16.2

16.3

16.4

16.5

16.6

16.7

16.8

16.9

Do some research on natural language processing (a book by Harris entitled
Natural Language is a good starting point) and write a position paper on the
probability of natural language programming.

Much of the work in software psychology has centered on the characteristics
of programming languages and their effects on the coding task. Write a paper
that presents some of the more current work in this area.

Select one or more programming languages and provide examples of each of
£ the psychological characteristics (e.g., uniformity, ambiguity, etc.) discussed

in Section 16.2.

Select the one programming language that you feel best satisfies the software

engineering traits that are discussed in Section 16.2.3. Would your choice

change if the technical characteristics of the language were also considered?

Select one of the third-generation languages discussed in Section 16.4.3. Pre-
pare a brief summary of important language characteristics and write a small
program that illustrates the language syntax.

Select any specialized language and prepare a summary of its important
characteristics and special features. Write a small program that illustrates its
language syntax.

Select any object-oriented language and prepare a summary of its important
characteristics and special features. Write a small program that illustrates its
language syntax.

Select any fourth-generation language (see [MAR85]) and prepare a summary
of its important characteristics and special features. Write a small “program”
that illustrates its language syntax.

Expert systems applications are one of a number of specialized application
areas. Research the LISP and PROLOG languages and summarize their
strengths and weaknesses in this application area. How are the languages
similar? How do they differ?

16.10 Ada is a programming language with a wide variety of features. How is Ada

different from programming languages such as PASCAL or C? In providing
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your answer, focus on the three fundamental characteristics discussed in Sec.
tion 16.3.

16.11 Ada has been the source of much controversy over the last few years. Summg.
rize the arguments (pro and con) that have been presented in the literatyre,

16.12 List by priority those style guidelines that you feel are most important. JUStify
your selection. Are these guidelines language-dependent, i.e., do some lan.
guages obviate the need for a particular guideline?

16.13 through 16.21 Code and attempt to implement the procedural designs fop
the correspondingly numbered problems in Chapter 10. You may use the pro.
gramming language of your choice, but remember the style and clarity guide.
lines discussed in this chapter.

FURTHER READINGS

Programming languages are fundamental to an understanding of computep
science and should be understood individually and in relationship to one ap.
other. Books by Sebesta [SEB89], Pratt [PRA84], and Ledgard and Marcotty
(LED81] satisfy both requirements nicely. A book by Smedema et al. (The.
Programming Languages Pascal, Modula, CHILL and Ada, Prentice.’
Hall, 1983) presents a thumbnail sketch of these important programming
languages.

The Elements of Programming Style [KER78] remains must reading
for all individuals who intend to generate source code. The authors have pro-
vided an extensive, annotated set of rules for coding (and design) that are’
well worth heeding. In addition Jon Bentley (Programming Pearls, Addison-"
Wesley, 1986; More Programming Pearls, Addison-Wesley, 1988) presents a
worthwhile collection of style guidelines and clever language solutions to
common programming problems. Books by Weiler (The Programmers Craft,
Reston, 1983), Liffick (The Software Development Source Book, Addison-
Wesley, 1985), and Ledgard (Professional Software: Programming Con-
cepts, Addison-Wesley, 1987) provide additional information about style.

There is no “best” textbook that can be chosen from the hundreds that
have been written about languages within any one of the language classes
that we have discussed. The following list contains a representative sample
of source material for many of the programming languages discussed in thig
chapter:

FORTRAN: Ellis, M., A Structured Approach to FORTRAN 77 Programmingf;
Addison-Wesley, 1989. i

COBOL: Johnson, B.M., and M. Ruwe, Professional Programming in COBOL,
Prentice-Hall, 1990.

ALGOL: Brailsford, D., and Walker, A., Introductory ALGOL-68 Programmingy
Wiley, 1979.

BASIC: Pearson, O.R., Programming with Basic, McGraw-Hill, 1986.

PL/1: Tremblay, J. P, et al., Structured PL/1 (PL/C) Programming, McGraw-H
1980.
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PASCAL: Mallozzi, J.S., Program Design in Pascal, McGraw-Hill, 1989.

C: Hutchison, R., and S.B. Just, Programming Using the C Language, McGraw-
Hill, 1988.

C++: Lippman, S.B., A C++ Primer, Addison-Wesley, 1989.

Ada: Cohen, N.H., Ada as a Second Language, McGraw-Hill, 1986.

Modula-2: Eisenbach, S., and C. Sadler, Program Design with Modula-2, Addison-
Wesley, 1989.

LISP: Anderson, J.R., et al., Essential Lisp, Addison-Wesley, 1987.

OPS5: Sherman, P.D., and J.C. Martin, An OPS5 Primer, Prentice-Hall, 1990.

Prolog: Clocksin, W, and C. Mellish, Programming in Prolog, 2d ed., Springer-
Verlag, 1984.

Smalltalk: Goldberg, A., and D. Robson, Smalltalk-80, Addison-Wesley, 1983.

FORTH: Katzen, H., Invitation to FORTH, Petrocelli, 1981.

An introduction to formal language theory can be found in Jewels of
Formal Language Theory (A. Salomaa, Computer Science Press, 1981) and
Meyer (Introduction to the Theory of Programming Languages, Prentice-
Hall, 1988). These books survey morphic representations, formal syntax
specification, DOL languages, and many other topics. An equally rigorous
treatment of language formalism can also be found in Dijkstra and Feijen
(A Method of Programming, Addison-Wesley, 1988).
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